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Dual multifractal spectra
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The multifractal formalism characterizes the scaling properties of a physical denagya function of the
distanceL. To each singularitye of the field is attributed a fractal dimension for its suppbftr). An
alternative representation has been proposed by considering the distribution of distances associated to a fixed
mass. Computing these spectra for a multifractal Cantor set, it is shown that these two approaches are dual to
each other, and that both spectra as well as the moment scaling exponents are simply related. We apply the
same inversion formalism to exponents obtained for turbulent statistics in the Gledzer-Ohkitani-Yamada shell
model and observe that the same duality relation holds here.
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[. INTRODUCTION we can relate the scaling exponenf{s|) to the multifractal
spectrum, through a simple Legendre transf¢&h
Initially motivated by the statistical characterization of
velocity fluctuations in turbulencgl], the multifractal[2,3] q=—f'(a)
formalism has been shown to be a powerful way of analyz- Q) =qa+f(a). )
ing a large body of different problems. It provides a simple

and elegant way of performing a “dimensional analysis” of  Recently, JensefiL5] proposed to consider an alternative
singular fields. In turbulence, this approach has been applieghproach to characterize the same fields. Instead of studying
to the fluctuations of the velocity field, and deviation from the statistical distribution of mass(L) over a fixed distance
the simple (monofractal Kolmogorov [4] scaling of mo- | he proposed to consider the distribution of distaricgs)
ments of different orders has been observed both experimeRy,ch that a fixed mass is contained in each subset. From
tally [5-8] and numericallyf9,10]. It has been used also to the injtial description(m(L)%=L™® a naive expectation
characterize the growth probabilities of diffusion-limited ag-\yould have been that_(m) @)ecm9. However, considering
gregation[11]. Random resistor networ{42,13 at the on-  {he Gledzer-Ohkitani-YamadéGOY) model [16,17 (as a

set of percolation have also been studied using this formaloy-model for turbulende it was shown that the latter expec-
ism. Extension to damage and fracture mod2# has been  tation was violated15]. Instead a different scaling was ob-

proposed. served
In those examples a local physical quantity—referred
to as a “mass” in the following for concreteness—is distrib- (L(m)Pyocm?®), (5)

uted in spacdor time) and the formalism allows to charac-

terize the statistical distribution of this quantity, or equiva- Byt apparently, the series of exponép) seemed unrelated
lently its moment of any order, as function of the system sizao 7(q). This unexpected feature suggested to use this new
L (or time interval over which it is considered. The field is scaling as a complementary statistical property of turbulence.
decomposed, according to its singularitiesnto a continu- In the following we will consider a simple example of a
ous set of fractal supports. The corresponding fractal dimenmultifractal set, using the standard Cantor set construction,
sionf(«) as a function of the singularity of the field isthe  but endowing each interval with a different mg&g. This
multifractal spectrum. Hence, the numbeim) of elements  simple case study allows to obtain a direct evaluation of the
of massm such that two multifractal spectra, as well as the corresponding scaling
exponents. We show that within this example both ap-
m~L¢ (1) proaches are related through simple duality relations. We
then discuss the applicability of the previously derived dual-
scales as ity relations to the case of turbulence. Numerical estimates of
the scaling exponents of length moments for fixed velocity
n(m)~ L@, ) differences are obtained fro_m the She and _Leves[q@
proposed form for the velocity moments scaling exponents.
From this function, the scaling of any statistical momentWe can apply this f_or_mula (o obtain the series of_exponents
of the field can be cc;mputed Defining the moment of orderfor the Inverse statistics. To compare these "static” data to
a M., and its scaling with th'e system size as more realistic dynamical turbulgnce data we extract the scal-
A ing exponents for forward and inverse statistics of the GOY
shell model. This was already done in Rlf5] but here we
M= D mi~ L 7(@ 3) extend the analysis to negative v_alues of the moments of _the
i standard forward structure functions. We then apply the in-
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FIG. 1. Construction of the multifractal Cantor set. Starting 0 1 2 3 4 5
from an interval of lengti. and massV (generation § the first o

generation is obtained by splitting the interval into three equal
length segments, and dropping the middle part. The n&ss
distributed into two unequal part! andsM respectively for the
left and right interval. The same procedure is repeated recursivelg(“)'
onto each interval.

FIG. 2. Multifractal spectra for the Cantor set. The bold curve is
the f(«) function, while the dotted curve shows the dual spectrum

equal partstM andsM such that +s=1 (see Fig. L After

version formula and compare to the exponents obtained bl "ePetitions of this procedure, we obtain a generafion
direct measurements of the inverse structure function. watructure. The size of each piecefis=3""L. Its mass is
obtain quite good results in the comparisons of these dat®=r's" 'M, wherei is the number of choices leading to a
sets as will be discussed, in particular, in Sec. VI. Although itSPecific part. The number of such intervals carrying the same
is by no means a proof, it gives an indication that at least ifnass isn=(y), while the total number of parts iS
some cases, the inversion formula we defiviich has been ==;(y) =2".
previously been derived in other contexts as we digcuss We go to the continuum limit and define the reaasi
gives a relation between the exponents of forward and in=xN. Using Stirling formula we have
verse statistics.

An inversion formula similar to the one derived in this N NN . (1-x)7-N
paper has been proposed for the turbulence spgt@jaand n=2 (N3ONIN(L—x) N =[x*(1—-x) |
has been applied to multiaffine fields in REZ0]. Recently, ©6)
the inverse statistics has been applied to two-dimensional
turbulence with the very interesting result that the inverse | order to bridge this computation with the standard way

statistics of a smooth signal shows nontrivial behaVR.  of defining the multifractal spectrurf] (see Fig. 2 we
Hastings has also derived a similar formula for Laplaciantroduce

random walks in the very different context of diffusion lim-

ited aggregatiom22]. By using iterated conformal mappings In(m/M)
Hastings obtained the exact multifractal spectra of the har- a= (eI
monic measure and derive the inversion formula forftfe)
spectrum. In(n)
)=/ @)
Il. STANDARD MULTISCALING FOR THE CANTOR SET In(€/L)

The interval of lengthL is split in three equal parts and and we defineag= —In(s)/In(3) and a;=—In(r)/In(3). A
the middle one is removed. The madsis split in two un-  simple algebra leads to

(a1—ag)In(a;—ag) — (ay— a)In(a;— @) — (a— ag) INn(a— ayp)

fle)= (-~ agn(3) ®
|
ll. MOMENT SCALING _In(ri+s9) 10
The moment of ordeq of the mass distribution is defined ma)= In(3)
asAq(N)==2in(i)[m(i)/M]9. It obeys the recursion formula
Aq(N) = (ra+s)A,(N-1). 9) One basic property of the multifractal formalism is that

the scaling exponents(q) can be related to the multifractal
For the definition of the scaling exponenfq) as Aq(N)  spectrum through a Legendre transform. Indeed, the moment
x(¢/L)” " we can write can be evaluated a&,(N)==,(¢/L)"(®*9% Hence,7(q)
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4 The symmetry property of the Legendre transform allows
us to express the reverse transformation as
o a  =7(q) >
> 2 fla) =1(q)—qa. 12
l'; _4 L
-6 b IV. CONSTANT MASS ENSEMBLE
8t 1 Now we introduce the alternative approach of truncating
-10 : L . . . the hierarchical construction at a fixed mass and not fixed
-4 2 0 2 4 generation(or length. The massn/M is chosen, and thuis
andj are related by
FIG. 3. Scaling exponentgq) for the mass as a function of the risi=m/M. (13
interval length in bold line, and the dual scaling exponefd) in
dotted line. The length of such intervals is
=max,[f(«)+ga]. This defines the strength of the singular- fzgf(iﬂ) (14)
ity @ which contributes dominantly to the moment of order L
q and their number isi= (| ).
_ g To mimic a similar construction as previously we define
4 =—f(a) (11) ¢/IL=(m/M)#, and n=(m/M)95). A simple computation
7(q) =f(a)+qa. leads to
|
a(B)— Blayi—ag)In(B)+ B(a1— ag)In(ay— ag) = (1— Bag)IN(1— Bag) — (Ba;—1)In(Ba;—1) (15
(a3—a)In(3) '

Comparison with the original multifractal spectrum shows Let us now use the duality relatidd6) to relate the two

that they are related through series of scaling exponents through successive changes of
variables
9(B)=pHLB). (16)
In fact this key relation can be simply derived by noting P=—9'(B)=—F(UB)+ " (UB)/p=—F(a)+f'(a)a
that == 7(Q)+da—da=—7(q) (20)
n:(glL)f(a):(m/M)f(In(m/M)/In((f/L))In({’/L)/In(m/M)
and
=(m/M)PTB) = (m/M)9(F) (17)

0(p)=9(B)+pB=[f(a)+plla
=[7(q)—qa—7(q) )/ a=—q. (21

from which Eq.(16) results.

V. MOMENT SCALING

Thus the two functions and ¢ are related by a mere inver-

We introduce similar moments in the dual ensemBle ion Up 1o sign reversalsee also Ref22)
sion u sig versals S ] ,

=3>n(€/L)(€/L)P and define their scaling exponeni$p)
asB,oc(m/M)%P). As for the primal ensemble, the scaling
exponenty(p) are related to the multifractal spectrg(g) —60(=1(q))=q. (22)
through a Legendre transform

One can also visualize the above result by noting that the

p =-9'(B) (18 graph ofé(p) is obtained from that of(q) through a simple
6(p) =g(B)+pB symmetry with respect to the line passing through the origin
and the direction { 1,1), see Fig. 3
and reciprocally Therefore, contrary to what was initially proposed, the
, two series of exponents are not independent. They are linked
{'3 =0'(p) (19 by a duality relation, as are the two multifractal spedtra
g(B) =06(p)—pp. andg.
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TABLE I. Value of somer(q) and6(q) exponents for moments kind of data were already applied in the paper by one of us
of orderq based on numerical simulations of the GOY shell modelwhich proposed the inverse structure functigms]. In tur-
[9,16,17. These data are as presented in RE3]. For comparison,  pulence theory, it is well known that scaling behavior of
we present the corresponding series of exponents based on She afglocity field u(x,t) and the understanding of intermittency
Levesque formuldindex SL). To obtain the series of the inverse effects in fully developed turbulence is described in terms of

exponentsis (q) we have invoked the inversion formu(a2). standard structure functions defined as
q Tcov(d) fc0v(a) 7s1(Q) bs1(q) (Auy(€)9y~ €7, (29
0.0 0.00 0.00 0.000 0.00 . .
0.2 0.08 0.45 0.076 051  Wherethe difference is
0.4 0.15 0.89 0.150 1.00 Au(€)=u(x+r)—u(x), €=]rl. (25)
0.6 0.22 1.3 0.222 1.46
0.8 0.29 1.7 0.294 1.91 The average in Eq(24) is over space and time. We have
1.0 0.39 2.04 0.364 2.33 assumed full isotropy of the velocity field. The set of expo-
2.0 0.73 3.7 0.696 4.21 nentsr, forms a multiscaling spectruii23].
3.0 1.00 5.4 1.00 5.77 The corresponding dual structure functions is defined by
4.0 1.28 7.0 1.28 7.09 considering the following quantities
5.0 1.53 8.5 1.54 8.23 q g
6.0 1.77 10.0 1.78 9.24 (€(Au)T~[Auy%, (26)
;'8 2'28 E; ;'gg igég where the differencdu, is again defined as in Eq25) and
9'0 2'39 14'5 2'41 11' €(Au,) is understood as thainimaldistance irr, measured

: ' ' ' 68 from x, for which the velocity difference exceeds the value
10.0 2.61 16.0 2.59 12.36

Au, [15]. In other words, we fix a certain set of values of the
velocity differenceAu,. Starting out from the poink, we
monitor the distanceé(Au,) where the velocity differences
are equal to the prescribed values. Performing an average
In order to test the relevance of the above analysis to aver space and time the inverted structure functions(£&).
more physical application than the Cantor set, we resort tare obtained.
the framework of turbulence which was the initial context of  The turbulence data are obtained from simulations of the
the suggestion of these dual quantities. In this context, th&QOY shell model[9,16,17. This model is a rough approxi-
local physical quantity of interest is the velocity fluctuation mation to the Navier-Stokes equations and is formulated on a
Au (instead of the mass in the above examlkeidied over discrete set ok values,k,=r". We use the standard value
a distancer which plays the role of the local scale The r=2. In term of a complex Fourier mode, of the velocity
early suggestion by Kolmogorov of the scaling momentsfield the model reads
7(q) =q/3 was shown to break down due to intermittency
thus defining a nontrivial series(q) which has resisted all
theoretical attempts to compute them up to now. Neverthe-
less, semiempirical formulas have been proposed which ac-
counts rather precisely for the numerical values of these ex- +&u* u* )+f5 27)
ponents as determined experimentally. In particular, the She 4 "n-17n=2 n4»
and Levesqu¢l8] formula appears as an accurate fit. They
proposed with boundary conditionb;=by=c;=c,=ay_1=ay=0.f
is an external, constant forcing, here on the fourth mode. The
(q)=0q/9+2[1—(2/3)93]. (23)  coefficients of the nonlinear terms must follow the relation
a,+b,.1+c,.:2,=0 in order to satisfy the conservation of
Table | gives the corresponding exponents for selected energy, E=3|u,|?, when f=»=0. The constraints still
positive moments. In order to extract the corresponding leave a free parameter so that one can sei,=1b,;
exponents for the dual statistics, we apply the inversion for=—€,c,,=—(1—¢€) [24]. As observed in Ref[25], one
mula(22). Indeed, we then need to employ the She-Levesquebtains the canonical value= 1/2, if helicity conservation is
formula for negative moments. From the derivation of thisalso demanded. The s@7) of N coupled ordinary differen-
formula, it is not obvious that such extension is allowed bytial equations can be numerically integrated by standard
the assumptions made by She and Levesque. Neverthelesschniques. We have used standard parameters in this paper
we take the liberty to continue the formula to negative mo-N=27, v=10"°, k,=0.05, andf=5x10"3.
ments and obtain the list of exponertdisted in Table I. The structure function exponentg are shown in Fig. 4
In order to compare these results with data obtained fronfor integer moments in the intervaje[ —12;10]. A line
numerical simulations of turbulence models, and even moreonnects the points in order to guide the eye. The associated
importantly to test the inversion formul@2), we turn to  exponentsd(q) for the inverse structure functions are also
dynamical turbulence generations by shell mod8ls This  shown in Fig. 4 for moments in the intervake[0;12], and

VI. APPLICATION TO TURBULENCE STATISTICS

b
* * n % *
nUn+1Un+2T 5 Un—1Un+g

d ) i
a+ vky u, =ik,
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20 - y y " TABLE II. Value of exponents obtained from simulations of the
-l ) GOY model for negative moments in the intengpk [ —12;—2].
Shown are the values of 7(q) which according to the inversion
10} formula should be compared ® (—q). Last row are values of
& 6(— 7(q)) which should be compared toq.
. 5
ol q ) 071 (—q) 0(—(a))
st -2 1.0 0.98 2.04
-3 1.7 1.59 3.1
-10 : . . .
15 10 = o S 10 -4 21 2.17 3.9
q -5 2.8 2.76 5.06
-6 3.4 3.38 6.04
FIG. 4. Scaling exponents obtained from simulations of the_; 38 4.0 6.7

GOY shell model. The full curve gives the forward structure func- _g

4.6 4.66 7.9
tion exponentsr,. The dashed line connects the exponehjdor _ 5.2 534 8.8
the inverted structure functions. The black dots are the results ob- 10 5'9 éO 9 '85
tained by applying the inversion formula, E@?2), and thus trans- ) : .
ferring the data for negative's of 7 to positiveq's for 6. -1 6.5 6.59 10.85
-12 7.2 7.25 11.9

are connected by a dotted line. It is possible to extract the

exponentsr, to reasonable accuracy for negative MOMENtS .5, ,sq of the possible occurrence of arbitrarily small velocity
—q although the quality of the scaling gradually decreasegjigterences over a given distanéer time using Taylor's hy-
with the value ofg. . . ) pothesi$. Therefore, the duality relation may be exploited to
As an example, we show in Fig. 5 the behavior of ohiain data which would be inaccessible otherwise. This pro-
(€(Au) %), corresponding taq=—2. We observe three cqqyre however relies on the applicability of this duality to
distinct regimes: the small scales referring to the trivialgyperimental turbulence, which could not be tested directly if
sm(_)oth regime, the |nert|al_ scallng regime, and the _cutOﬁ the direct moments cannot be computed. Nevertheless the
regime at large scales. For increasing value of negative MQsresent test of the analysis, using the shell model, constitutes

ments, the point wher¢((Au,)%) are small will be en- 5, encouraging argument to proceed in this direction.
hanced. This is a very important point to be considered for  armed with these data sets we are ready to check the

the analysis of experimental data. Indeed, the lower cutoff Of/alidity of the inversion formula22) which by a simple
the inertial range, increasing with large negative valueg of ;,ersion reads

[26], may render the analysis of experimental data quite dif-

ficult. Using an extended self-similarity procedystudying o

one moment against another one rather than as a function of —r@)=0""(~q). (28

the velocity difference seems to provide better results for ) ] ] ] )

the inverse exponents, but since the cutoff effect is physical Using the relation(22) directly by insertingr(q) for q

and not a measurement artifact, the exploitation of the dat& [ —10;—1] we obtain by linear extrapolation the data for

may lead to apparent contradictiof]. 64 shown in Table Il. The results are also shown as black
It is to be noted that from duality, we may convert dual dots in Fig. 4. Using the inverted relati¢@8), we can com-

positive order moment to direct negative order moment. Th@are the value of-r, with the values of¢~*(—q), and

latter may be very difficult to estimate experimentally be-these are also listed in Table II. Indeed, there is a very good

correspondence between the values, supporting the sugges-

N tion that the inversion formula is valid for the shell model

10t 1 turbulence data. This might be somewhat surprising as we do

indeed perform a very different statistics.

VII. CONCLUSIONS

<Aux(l)'2>

The alternative approach to the standard multifractal spec-
trum and scaling exponents of different moment orders,
which was proposed by interchanging the role of the physical
, quantity of interest and the lengtor time) scale, has been
10 examined in the case of a simple multifractal Cantor set. This

example shows that the two spectra are simply related, and

FIG. 5. A plot of the ordinary structure function from shell that the scaling exponents of the length moments can be
model data with momeng=—2, i.e.,([Auy(¢)]% vs the length  related to the usual series of scaling exponents.
scalef. Note the three different regimes: The small scale regime of Based on this correspondence, we tested the application
the smooth behavior; the inertial scaling regime, and outer cutoff. of this alternative approach to turbulence using velocity data
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obtained from shell model calculations. A good agreementnultifractal behavior extends to arbitrarily large negative or-

was found. der moments, or if the multifractal spectrum ends at a finite
As illustrated by the duality correspondence, the duamoment. As a practical example, the She-Levesque expres-

multifractal spectrum might constitute a different way of ex-sjon for the structure function exponent could be validated

tracting from experimental data, information about negativefor negative order moments.

order moments, characterizing laminar regions. The latter are

indeed difficult to access using the direct moment analysis

more suited to positive order moments, and hence. inerti_al ACKNOWLEDGMENTS

singular structures. Experimentally, because of practical dif-

ficulties in resolving very small velocity differences, nega- We wish to acknowledge fruitful discussions and
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