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Dual multifractal spectra

Stéphane Roux1 and Mogens H. Jensen2

1Laboratoire Surface du Verre et Interfaces, UMR CNRS/Saint-Gobain, 39 quai Lucien lefranc, 93303 Aubervilliers cedex, Fra
2Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

~Received 18 August 2003; published 29 January 2004!

The multifractal formalism characterizes the scaling properties of a physical densityr as a function of the
distanceL. To each singularitya of the field is attributed a fractal dimension for its supportf (a). An
alternative representation has been proposed by considering the distribution of distances associated to a fixed
mass. Computing these spectra for a multifractal Cantor set, it is shown that these two approaches are dual to
each other, and that both spectra as well as the moment scaling exponents are simply related. We apply the
same inversion formalism to exponents obtained for turbulent statistics in the Gledzer-Ohkitani-Yamada shell
model and observe that the same duality relation holds here.
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I. INTRODUCTION

Initially motivated by the statistical characterization
velocity fluctuations in turbulence@1#, the multifractal@2,3#
formalism has been shown to be a powerful way of anal
ing a large body of different problems. It provides a simp
and elegant way of performing a ‘‘dimensional analysis’’
singular fields. In turbulence, this approach has been app
to the fluctuations of the velocity field, and deviation fro
the simple ~monofractal! Kolmogorov @4# scaling of mo-
ments of different orders has been observed both experim
tally @5–8# and numerically@9,10#. It has been used also t
characterize the growth probabilities of diffusion-limited a
gregation@11#. Random resistor networks@12,13# at the on-
set of percolation have also been studied using this form
ism. Extension to damage and fracture models@14# has been
proposed.

In those examples a local physical quantitym—referred
to as a ‘‘mass’’ in the following for concreteness—is distri
uted in space~or time! and the formalism allows to charac
terize the statistical distribution of this quantity, or equiv
lently its moment of any order, as function of the system s
L ~or time interval! over which it is considered. The field i
decomposed, according to its singularitiesa into a continu-
ous set of fractal supports. The corresponding fractal dim
sion f (a) as a function of the singularitya of the field is the
multifractal spectrum. Hence, the numbern(m) of elements
of massm such that

m;La ~1!

scales as

n~m!;L f (a). ~2!

From this function, the scaling of any statistical mome
of the field can be computed. Defining the moment of or
q, Mq , and its scaling with the system size as

Mq5(
i

mi
q;Lt(q) ~3!
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we can relate the scaling exponentst(q) to the multifractal
spectrum, through a simple Legendre transform@3#

H q52 f 8~a!

t~q!5qa1 f ~a!.
~4!

Recently, Jensen@15# proposed to consider an alternativ
approach to characterize the same fields. Instead of stud
the statistical distribution of massm(L) over a fixed distance
L, he proposed to consider the distribution of distancesL(m)
such that a fixed massm is contained in each subset. Fro
the initial description^m(L)q&}Lt(q) a naive expectation
would have been that^L(m)t(q)&}mq. However, considering
the Gledzer-Ohkitani-Yamada~GOY! model @16,17# ~as a
toy-model for turbulence!, it was shown that the latter expec
tation was violated@15#. Instead a different scaling was ob
served

^L~m!p&}mu(p). ~5!

But apparently, the series of exponentu(p) seemed unrelated
to t(q). This unexpected feature suggested to use this n
scaling as a complementary statistical property of turbulen

In the following we will consider a simple example of
multifractal set, using the standard Cantor set construct
but endowing each interval with a different mass@3#. This
simple case study allows to obtain a direct evaluation of
two multifractal spectra, as well as the corresponding sca
exponents. We show that within this example both a
proaches are related through simple duality relations.
then discuss the applicability of the previously derived du
ity relations to the case of turbulence. Numerical estimate
the scaling exponents of length moments for fixed veloc
differences are obtained from the She and Levesque@18#
proposed form for the velocity moments scaling exponen
We can apply this formula to obtain the series of expone
for the inverse statistics. To compare these ‘‘static’’ data
more realistic dynamical turbulence data we extract the s
ing exponents for forward and inverse statistics of the GO
shell model. This was already done in Ref.@15# but here we
extend the analysis to negative values of the moments of
standard forward structure functions. We then apply the
©2004 The American Physical Society09-1
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version formula and compare to the exponents obtained
direct measurements of the inverse structure function.
obtain quite good results in the comparisons of these d
sets as will be discussed, in particular, in Sec. VI. Althoug
is by no means a proof, it gives an indication that at leas
some cases, the inversion formula we derive~which has been
previously been derived in other contexts as we discu!
gives a relation between the exponents of forward and
verse statistics.

An inversion formula similar to the one derived in th
paper has been proposed for the turbulence spectra@19# and
has been applied to multiaffine fields in Ref.@20#. Recently,
the inverse statistics has been applied to two-dimensio
turbulence with the very interesting result that the inve
statistics of a smooth signal shows nontrivial behavior@21#.
Hastings has also derived a similar formula for Laplac
random walks in the very different context of diffusion lim
ited aggregation@22#. By using iterated conformal mapping
Hastings obtained the exact multifractal spectra of the h
monic measure and derive the inversion formula for thef (a)
spectrum.

II. STANDARD MULTISCALING FOR THE CANTOR SET

The interval of lengthL is split in three equal parts an
the middle one is removed. The massM is split in two un-

FIG. 1. Construction of the multifractal Cantor set. Starti
from an interval of lengthL and massM ~generation 0!, the first
generation is obtained by splitting the interval into three eq
length segments, and dropping the middle part. The massM is
distributed into two unequal partsrM andsM respectively for the
left and right interval. The same procedure is repeated recursi
onto each interval.
d
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equal parts,rM andsM such thatr 1s51 ~see Fig. 1!. After
N repetitions of this procedure, we obtain a generationN
structure. The size of each piece is,532NL. Its mass is
m5r isN2 iM , wherei is the number ofr choices leading to a
specific part. The number of such intervals carrying the sa
mass is n5(N

i ), while the total number of parts isS
5( i(N

i )52N.
We go to the continuum limit and define the realx as i

5xN. Using Stirling formula we have

n522N
NN

~Nx!Nx@N~12x!#N(12x)
5@xx~12x!(12x)#2N.

~6!

In order to bridge this computation with the standard w
of defining the multifractal spectrum@3# ~see Fig. 2!, we
introduce

a5
ln~m/M !

ln~,/L !
,

f ~a!52
ln~n!

ln~,/L !
, ~7!

and we definea052 ln(s)/ln(3) and a152 ln(r)/ln(3). A
simple algebra leads to

l

ly

FIG. 2. Multifractal spectra for the Cantor set. The bold curve
the f (a) function, while the dotted curve shows the dual spectr
g(a).
f ~a!5
~a12a0!ln~a12a0!2~a12a!ln~a12a!2~a2a0!ln~a2a0!

~a12a0!ln~3!
. ~8!
at
l
ent
III. MOMENT SCALING

The moment of orderq of the mass distribution is define
asAq(N)5( in( i )@m( i )/M #q. It obeys the recursion formula

Aq~N!5~r q1sq!Aq~N21!. ~9!

For the definition of the scaling exponentt(q) as Aq(N)
}(,/L)2t(q) we can write
t~q!52
ln~r q1sq!

ln~3!
. ~10!

One basic property of the multifractal formalism is th
the scaling exponentst(q) can be related to the multifracta
spectrum through a Legendre transform. Indeed, the mom
can be evaluated asAq(N)5(a(,/L) f (a)1qa. Hence,t(q)
9-2
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5maxa@f(a)1qa#. This defines the strength of the singula
ity a which contributes dominantly to the moment of ord
q.

H q 52 f 8~a!

t~q! 5 f ~a!1qa.
~11!

FIG. 3. Scaling exponentst(q) for the mass as a function of th
interval length in bold line, and the dual scaling exponentu(q) in
dotted line.
ws
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The symmetry property of the Legendre transform allo
us to express the reverse transformation as

H a 5t8~q!

f ~a! 5t~q!2qa.
~12!

IV. CONSTANT MASS ENSEMBLE

Now we introduce the alternative approach of truncat
the hierarchical construction at a fixed mass and not fi
generation~or length!. The massm/M is chosen, and thusi
and j are related by

r isj5m/M . ~13!

The length of such intervals is

,

L
532( i 1 j ) ~14!

and their number isn5( i
i 1 j ).

To mimic a similar construction as previously we defi
,/L5(m/M )b, and n5(m/M )g(b). A simple computation
leads to
g~b!5
b~a12a0!ln~b!1b~a12a0!ln~a12a0!2~12ba0!ln~12ba0!2~ba121!ln~ba121!

~a12a0!ln~3!
. ~15!
s of
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Comparison with the original multifractal spectrum sho
that they are related through

g~b!5b f ~1/b!. ~16!

In fact this key relation can be simply derived by notin
that

n5~,/L ! f (a)5~m/M ! f „ln(m/M )/ ln(,/L)…ln(,/L)/ ln(m/M )

5~m/M !b f (1/b)5~m/M !g(b) ~17!

from which Eq.~16! results.

V. MOMENT SCALING

We introduce similar moments in the dual ensembleBp
5(n(,/L)(,/L)p and define their scaling exponentsu(p)
as Bp}(m/M )u(p). As for the primal ensemble, the scalin
exponentsu(p) are related to the multifractal spectrumg(b)
through a Legendre transform

H p 52g8~b!

u~p! 5g~b!1pb
~18!

and reciprocally

H b 5u8~p!

g~b! 5u~p!2pb.
~19!
Let us now use the duality relation~16! to relate the two
series of scaling exponents through successive change
variables

p52g8~b!52 f ~1/b!1 f 8~1/b!/b52 f ~a!1 f 8~a!a

52t~q!1qa2qa52t~q! ~20!

and

u~p!5g~b!1pb5@ f ~a!1p#/a

5@t~q!2qa2t~q!#/a52q. ~21!

Thus the two functionst andu are related by a mere inver
sion up to sign reversals~see also Ref.@22#!,

2u„2t~q!…5q. ~22!

One can also visualize the above result by noting that
graph ofu(p) is obtained from that oft(q) through a simple
symmetry with respect to the line passing through the ori
and the direction (21,1), see Fig. 3

Therefore, contrary to what was initially proposed, t
two series of exponents are not independent. They are lin
by a duality relation, as are the two multifractal spectraf
andg.
9-3
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VI. APPLICATION TO TURBULENCE STATISTICS

In order to test the relevance of the above analysis t
more physical application than the Cantor set, we resor
the framework of turbulence which was the initial context
the suggestion of these dual quantities. In this context,
local physical quantity of interest is the velocity fluctuatio
Du ~instead of the mass in the above example! studied over
a distancer which plays the role of the local scale,. The
early suggestion by Kolmogorov of the scaling mome
t(q)5q/3 was shown to break down due to intermitten
thus defining a nontrivial seriest(q) which has resisted al
theoretical attempts to compute them up to now. Nevert
less, semiempirical formulas have been proposed which
counts rather precisely for the numerical values of these
ponents as determined experimentally. In particular, the
and Levesque@18# formula appears as an accurate fit. Th
proposed

t~q!5q/912@12~2/3!q/3#. ~23!

Table I gives the correspondingt exponents for selecte
positive moments. In order to extract the correspondingu
exponents for the dual statistics, we apply the inversion
mula~22!. Indeed, we then need to employ the She-Leves
formula for negative moments. From the derivation of th
formula, it is not obvious that such extension is allowed
the assumptions made by She and Levesque. Neverthe
we take the liberty to continue the formula to negative m
ments and obtain the list of exponentsu listed in Table I.

In order to compare these results with data obtained fr
numerical simulations of turbulence models, and even m
importantly to test the inversion formula~22!, we turn to
dynamical turbulence generations by shell models@9#. This

TABLE I. Value of somet(q) andu(q) exponents for moments
of orderq based on numerical simulations of the GOY shell mo
@9,16,17#. These data are as presented in Ref.@15#. For comparison,
we present the corresponding series of exponents based on Sh
Levesque formula~index SL). To obtain the series of the invers
exponentsuSL(q) we have invoked the inversion formula~22!.

q tGOY(q) uGOY(q) tSL(q) uSL(q)

0.0 0.00 0.00 0.000 0.00
0.2 0.08 0.45 0.076 0.51
0.4 0.15 0.89 0.150 1.00
0.6 0.22 1.3 0.222 1.46
0.8 0.29 1.7 0.294 1.91
1.0 0.39 2.04 0.364 2.33
2.0 0.73 3.7 0.696 4.21
3.0 1.00 5.4 1.00 5.77
4.0 1.28 7.0 1.28 7.09
5.0 1.53 8.5 1.54 8.23
6.0 1.77 10.0 1.78 9.24
7.0 2.00 11.7 2.00 10.14
8.0 2.20 12.9 2.21 10.95
9.0 2.39 14.5 2.41 11.68
10.0 2.61 16.0 2.59 12.36
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kind of data were already applied in the paper by one of
which proposed the inverse structure functions@15#. In tur-
bulence theory, it is well known that scaling behavior
velocity field u(x,t) and the understanding of intermittenc
effects in fully developed turbulence is described in terms
standard structure functions defined as

^Dux~, !q&;,tq, ~24!

where the difference is

Dux~, !5u~x1r !2u~x!, ,5ur u. ~25!

The average in Eq.~24! is over space and time. We hav
assumed full isotropy of the velocity field. The set of exp
nentstq forms a multiscaling spectrum@23#.

The corresponding dual structure functions is defined
considering the following quantities

^,~Dux!
q&;uDuxuuq, ~26!

where the differenceDux is again defined as in Eq.~25! and
,(Dux) is understood as theminimaldistance inr , measured
from x, for which the velocity difference exceeds the val
Dux @15#. In other words, we fix a certain set of values of t
velocity differenceDux . Starting out from the pointx, we
monitor the distances,(Dux) where the velocity differences
are equal to the prescribed values. Performing an ave
over space and time the inverted structure functions Eq.~26!
are obtained.

The turbulence data are obtained from simulations of
GOY shell model@9,16,17#. This model is a rough approxi
mation to the Navier-Stokes equations and is formulated o
discrete set ofk values,kn5r n. We use the standard valu
r 52. In term of a complex Fourier modeun of the velocity
field the model reads

S d

dt
1nkn

2Dun5 iknS anun11* un12* 1
bn

2
un21* un11*

1
cn

4
un21* un22* D1 f dn,4 , ~27!

with boundary conditionsb15bN5c15c25aN215aN50. f
is an external, constant forcing, here on the fourth mode.
coefficients of the nonlinear terms must follow the relati
an1bn111cn1250 in order to satisfy the conservation o
energy, E5(nuunu2, when f 5n50. The constraints still
leave a free parametere so that one can setan51,bn11
52e,cn1252(12e) @24#. As observed in Ref.@25#, one
obtains the canonical valuee51/2, if helicity conservation is
also demanded. The set~27! of N coupled ordinary differen-
tial equations can be numerically integrated by stand
techniques. We have used standard parameters in this p
N527, n51029, k050.05, andf 5531023.

The structure function exponentstq are shown in Fig. 4
for integer moments in the intervalqP@212;10#. A line
connects the points in order to guide the eye. The associ
exponentsu(q) for the inverse structure functions are al
shown in Fig. 4 for moments in the intervalqP@0;12#, and

l

and
9-4
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are connected by a dotted line. It is possible to extract
exponentstq to reasonable accuracy for negative momen
2q although the quality of the scaling gradually decrea
with the value ofq.

As an example, we show in Fig. 5 the behavior
^,(Dux)

22&, corresponding toq522. We observe three
distinct regimes: the small scales referring to the triv
smooth regime, the ‘‘inertial’’ scaling regime, and the cuto
regime at large scales. For increasing value of negative
ments, the point wherê,(Dux)

q& are small will be en-
hanced. This is a very important point to be considered
the analysis of experimental data. Indeed, the lower cutof
the inertial range, increasing with large negative values oq
@26#, may render the analysis of experimental data quite
ficult. Using an extended self-similarity procedure~studying
one moment against another one rather than as a functio
the velocity difference! seems to provide better results f
the inverse exponents, but since the cutoff effect is phys
and not a measurement artifact, the exploitation of the d
may lead to apparent contradictions@27#.

It is to be noted that from duality, we may convert du
positive order moment to direct negative order moment. T
latter may be very difficult to estimate experimentally b

FIG. 4. Scaling exponents obtained from simulations of
GOY shell model. The full curve gives the forward structure fun
tion exponentstq . The dashed line connects the exponentsuq for
the inverted structure functions. The black dots are the results
tained by applying the inversion formula, Eq.~22!, and thus trans-
ferring the data for negativeq’s of tq to positiveq’s for uq .

FIG. 5. A plot of the ordinary structure function from she
model data with momentq522, i.e., ^@Dux(,)#q& vs the length
scale,. Note the three different regimes: The small scale regime
the smooth behavior; the inertial scaling regime, and outer cuto
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cause of the possible occurrence of arbitrarily small veloc
differences over a given distance~or time using Taylor’s hy-
pothesis!. Therefore, the duality relation may be exploited
obtain data which would be inaccessible otherwise. This p
cedure however relies on the applicability of this duality
experimental turbulence, which could not be tested directl
the direct moments cannot be computed. Nevertheless
present test of the analysis, using the shell model, constit
an encouraging argument to proceed in this direction.

Armed with these data sets we are ready to check
validity of the inversion formula~22! which by a simple
inversion reads

2t~q!5u21~2q!. ~28!

Using the relation~22! directly by insertingt(q) for q
P@210;21# we obtain by linear extrapolation the data f
uq shown in Table II. The results are also shown as bla
dots in Fig. 4. Using the inverted relation~28!, we can com-
pare the value of2tq with the values ofu21(2q), and
these are also listed in Table II. Indeed, there is a very g
correspondence between the values, supporting the sug
tion that the inversion formula is valid for the shell mod
turbulence data. This might be somewhat surprising as we
indeed perform a very different statistics.

VII. CONCLUSIONS

The alternative approach to the standard multifractal sp
trum and scaling exponents of different moment orde
which was proposed by interchanging the role of the phys
quantity of interest and the length~or time! scale, has been
examined in the case of a simple multifractal Cantor set. T
example shows that the two spectra are simply related,
that the scaling exponents of the length moments can
related to the usual series of scaling exponents.

Based on this correspondence, we tested the applica
of this alternative approach to turbulence using velocity d

e
-

b-

f
.

TABLE II. Value of exponents obtained from simulations of th
GOY model for negative moments in the intervalqP@212;22#.
Shown are the values of2t(q) which according to the inversion
formula should be compared tou21(2q). Last row are values of
u(2t(q)) which should be compared to2q.

q 2t(q) u21(2q) u(2t(q))

22 1.0 0.98 2.04
23 1.7 1.59 3.1
24 2.1 2.17 3.9
25 2.8 2.76 5.06
26 3.4 3.38 6.04
27 3.8 4.0 6.7
28 4.6 4.66 7.9
29 5.2 5.34 8.8
210 5.9 6.0 9.85
211 6.5 6.59 10.85
212 7.2 7.25 11.9
9-5
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obtained from shell model calculations. A good agreem
was found.

As illustrated by the duality correspondence, the d
multifractal spectrum might constitute a different way of e
tracting from experimental data, information about negat
order moments, characterizing laminar regions. The latter
indeed difficult to access using the direct moment analy
more suited to positive order moments, and hence ine
singular structures. Experimentally, because of practical
ficulties in resolving very small velocity differences, neg
tive order moments have not been studied in details. T
raises the interesting question of investigating whether
B

J

ro
P.
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multifractal behavior extends to arbitrarily large negative
der moments, or if the multifractal spectrum ends at a fin
moment. As a practical example, the She-Levesque exp
sion for the structure function exponent could be valida
for negative order moments.
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